Wonder Club world wonders pyramid logo
×

Ceramic Materials: Science and Engineering Book

Ceramic Materials: Science and Engineering
Be the First to Review this Item at Wonderclub
X
Ceramic Materials: Science and Engineering, Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties , Ceramic Materials: Science and Engineering
out of 5 stars based on 0 reviews
5
0 %
4
0 %
3
0 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $99.99
Original Magazine
Physical Format

Sold Out

  • Ceramic Materials: Science and Engineering
  • Written by author C. Barry Carter
  • Published by Springer-Verlag New York, LLC, 6/30/2012
  • Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties
Buy Digital  USD$99.99

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

Preface     vii
History and Introduction
Introduction     3
Definitions     3
General Properties     4
Types of Ceramic and their Applications     5
Market     6
Critical Issues for the Future     7
Relationship between Microstructure, Processing and Properties     8
Safety     9
Ceramics on the Internet     10
On Units     10
Some History     15
Earliest Ceramics: The Stone Age     15
Ceramics in Ancient Civilizations     17
Clay     19
Types of Pottery     19
Glazes     20
Development of a Ceramics Industry     21
Plaster and Cement     22
Brief History of Glass     24
Brief History of Refractories     25
Major Landmarks of the Twentieth Century     26
Museums     28
Societies     29
Ceramic Education     29
Materials
Background You Need to Know     35
The Atom     35
Energy Levels     36
Electron Waves     37
Quantum Numbers     37
Assigning QuantumNumbers     39
Ions     42
Electronegativity     44
Thermodynamics: The Driving Force for Change     45
Kinetics: The Speed of Change     47
Bonds and Energy Bands     51
Types of Interatomic Bond     51
Young's Modulus     51
Ionic Bonding     53
Covalent Bonding     58
Metallic Bonding in Ceramics     63
Mixed Bonding     64
Secondary Bonding     64
Electron Energy Bands in Ceramics     66
Models, Crystals, and Chemistry     71
Terms and Definitions     71
Symmetry and Crystallography     74
Lattice Points, Directions, and Planes     75
The Importance of Crystallography     76
Pauling's Rules     76
Close-Packed Arrangements: Interstitial Sites     79
Notation for Crystal Structures     81
Structure, Composition, and Temperature     81
Crystals, Glass, Solids, and Liquid     82
Defects     83
Computer Modeling     83
Binary Compounds     87
Background     87
CsCl     88
NaCl (MgO, TiC, PbS)      88
GaAs ([Beta]-SiC)     89
AlN (BeO, ZnO)     90
CaF[subscript 2]     91
FeS[subscript 2]     92
Cu[subscript 2]0     93
CuO     93
TiO[subscript 2]     93
Al[subscript 2]O[subscript 3]     94
MoS[subscript 2] and CdI[subscript 2]     95
Polymorphs, Polytypes, and Polytypoids     96
Complex Crystal and Glass Structures     100
Introduction     100
Spinel     101
Perovskite     102
The Silicates and Structures Based on SiO[subscript 4]     104
Silica     105
Olivine     106
Garnets     107
Ring Silicates     107
Micas and Other Layer Materials     108
Clay Minerals     109
Pyroxene     109
[Beta]-Aluminas and Related Materials     110
Calcium Aluminate and Related Materials     111
Mullite     111
Monazite     111
YBa[subscript 2]Cu[subscript 3]O[subscript 7] and Related High-Temperature Superconductors (HTSCs)     112
Si[subscript 3]N[subscript 4], SiAlONs, and Related Materials     113
Fullerenes and Nanotubes     113
Zeolites and Microporous Compounds     114
Zachariasen's Rules for the Structure of Glass     115
Revisiting Glass Structures     117
Equilibrium Phase Diagrams     120
What's Special about Ceramics?     120
Determining Phase Diagrams     121
Phase Diagrams for Ceramists: The Books     124
Gibbs Phase Rule     124
One Component (C = 1)     125
Two Components (C = 2)     126
Three and More Components     128
Composition with Variable Oxygen Partial Pressure     130
Quaternary Diagrams and Temperature     132
Congruent and Incongruent Melting     132
Miscibility Gaps in Glass     133
Tools
Furnaces     139
The Need for High Temperatures     139
Types of Furnace     139
Combustion Furnaces     140
Electrically Heated Furnaces     141
Batch or Continuous Operation     141
Indirect Heating     143
Heating Elements     144
Refractories     146
Furniture, Tubes, and Crucibles     147
Firing Process     148
Heat Transfer      148
Measuring Temperature     149
Safety     151
Characterizing Structure, Defects, and Chemistry     154
Characterizing Ceramics     154
Imaging Using Visible-Light, IR, and UV     155
Imaging Using X-rays and CT Scans     157
Imaging in the SEM     158
Imaging in the TEM     159
Scanning-Probe Microscopy     161
Scattering and Diffraction Techniques     162
Photon Scattering     163
Raman and IR Spectroscopy     163
NMR Spectroscopy and Spectrometry     165
Mossbauer Spectroscopy and Spectrometry     166
Diffraction in the EM     168
Ion Scattering (RBS)     168
X-ray Diffraction and Databases     169
Neutron Scattering     171
Mass Spectrometry     172
Spectrometry in the EM     172
Electron Spectroscopy     174
Neutron Activation Analysis (NAA)     175
Thermal Analysis     175
Defects
Point Defects, Charge, and Diffusion     181
Are Defects in Ceramics Different?     181
Types of Point Defects     182
What Is Special for Ceramics?      183
What Type of Defects Form?     184
Equilibrium Defect Concentrations     184
Writing Equations for Point Defects     186
Solid Solutions     187
Association of Point Defects     189
Color Centers     190
Creation of Point Defects in Ceramics     191
Experimental Studies of Point Defects     192
Diffusion     192
Diffusion in Impure, or Doped, Ceramics     193
Movement of Defects     197
Diffusion and Ionic Conductivity     197
Computing     199
Are Dislocations Unimportant?     201
A Quick Review of Dislocations     202
Summary of Dislocation Properties     206
Observation of Dislocations     206
Dislocations in Ceramics     208
Structure of the Core     208
Detailed Geometry     211
Defects on Dislocations     214
Dislocations and Diffusion     215
Movement of Dislocations     216
Multiplication of Dislocations     216
Dislocation Interactions     217
At the Surface     219
Indentation, Scratching, and Cracks     219
Dislocations with Different Cores     220
Surfaces, Nanoparticles, and Foams     224
Background to Surfaces     224
Ceramic Surfaces     225
Surface Energy     225
Surface Structure     227
Curved Surfaces and Pressure     230
Capillarity     230
Wetting and Dewetting     231
Foams     232
Epitaxy and Film Growth     233
Film Growth in 2D: Nucleation     233
Film Growth in 2D: Mechanisms     234
Characterizing Surfaces     235
Steps     239
In Situ     240
Surfaces and Nanoparticles     241
Computer Modeling     241
Introduction to Properties     242
Interfaces in Polycrystals     246
What Are Grain Boundaries?     246
For Ceramics     248
GB Energy     249
Low-Angle GBs     251
High-Angle GBs     254
Twin Boundaries     255
General Boundaries     258
GB Films     259
Triple Junctions and GB Grooves     262
Characterizing GBs     263
GBs in Thin Films     264
Space Charge and Charged Boundaries     265
Modeling     265
Some Properties     265
Phase Boundaries, Particles, and Pores     269
The Importance     269
Different Types     269
Compared to Other Materials     270
Energy     270
The Structure of PBs     271
Particles     272
Use of Particles     276
Nucleation and Growth of Particles     276
Pores     277
Measuring Porosity     278
Porous Ceramics     279
Glass/Crystal Phase Boundaries     280
Eutectics     281
Metal/Ceramic PBs     282
Forming PBs by Joining     283
Mechanical Strength and Weakness
Mechanical Testing     289
Philosophy     289
Types of Testing     291
Elastic Constants and Other "Constants"     292
Effect of Microstructure on Elastic Moduli     294
Test Temperature     295
Test Environment     296
Testing in Compression and Tension     296
Three- and Four-Point Bending     297
K[subscript Ic] from Bend Test     298
Indentation      299
Fracture Toughness from Indentation     300
Nanoindentation     301
Ultrasonic Testing     301
Design and Statistics     302
SPT Diagrams     305
Deforming: Plasticity     309
Plastic Deformation     309
Dislocation Glide     310
Slip in Alumina     312
Plastic Deformation in Single Crystals     313
Plastic Deformation in Polycrystals     314
Dislocation Velocity and Pinning     315
Creep     317
Dislocation Creep     317
Diffusion-Controlled Creep     318
Grain-Boundary Sliding     318
Tertiary Creep and Cavitation     319
Creep Deformation Maps     321
Viscous Flow     321
Superplasticity     322
Fracturing: Brittleness     325
The Importance of Brittleness     325
Theoretical Strength: The Orowan Equation     326
The Effect of Flaws: The Griffith Equation     327
The Crack Tip: The Inglis Equation     329
Stress Intensity Factor     329
R Curves     330
Fatigue and Stress Corrosion Cracking     331
Failure and Fractography     332
Toughening and Ceramic Matrix Composites     335
Machinable Glass-Ceramics     338
Wear     338
Grinding and Polishing     339
Processing
Raw Materials     345
Geology, Minerals, and Ores     345
Mineral Formation     345
Beneficiation     347
Weights and Measures     347
Silica     348
Silicates     348
Oxides     351
Nonoxides     354
Powders, Fibers, Platelets, and Composites     359
Making Powders     359
Types of Powders     360
Mechanical Milling     360
Spray Drying     362
Powders by Sol-Gel Processing     363
Powders by Precipitation     363
Chemical Routes to Nonoxide Powders     364
Platelets     365
Nanopowders by Vapor-Phase Reactions     365
Characterizing Powders     366
Characterizing Powders by Microscopy     366
Sieving     366
Sedimentation     367
The Coulter Counter     368
Characterizing Powders by Light Scattering      368
Characterizing Powders by X-ray Diffraction     369
Measuring Surface Area (the BET Method)     369
Determining Particle Composition and Purity     370
Making Fibers and Whiskers     370
Oxide Fibers     371
Whiskers     372
Glass Fibers     372
Coating Fibers     373
Making Ceramic-Matrix Composites     374
Ceramic-Matrix Composites from Powders and Slurries     374
Ceramic-Matrix Composites by Infiltration     375
In Situ Processes     375
Glass and Glass-Ceramics     379
Definitions     379
History     380
Viscosity, [eta]     383
Glass: A Summary of Its Properties, or Not     385
Defects in Glass     386
Heterogeneous Glass     386
Yttrium-Aluminum Glass     386
Coloring Glass     386
Glass Laser     388
Precipitates in Glass     388
Crystallizing Glass     388
Glass as Glaze and Enamel     390
Corrosion of Glass and Glaze     392
Types of Ceramic Glasses     393
Natural Glass     394
The Physics of Glass      396
Sols, Gels, and Organic Chemistry     400
Sol-Gel Processing     400
Structure and Synthesis of Alkoxides     401
Properties of Alkoxides     402
The Sol-Gel Process Using Metal Alkoxides     403
Characterization of the Sol-Gel Process     406
Powders, Coatings, Fibers, Crystalline, or Glass     407
Shaping and Forming     412
The Words     412
Binders and Plasticizers     413
Slip and Slurry     413
Dry Pressing     414
Hot Pressing     414
Cold Isostatic Pressing     415
Hot Isostatic Pressing     416
Slip Casting     417
Extrusion     418
Injection Molding     419
Rapid Prototyping     420
Green Machining     420
Binder Burnout     421
Final Machining     421
Making Porous Ceramics     422
Shaping Pottery     422
Shaping Glass     423
Sintering and Grain Growth     427
The Sintering Process     427
The Terminology of Sintering     429
Capillary Forces and Surface Forces      429
Sintering Spheres and Wires     429
Grain Growth     431
Sintering and Diffusion     431
Liquid-Phase Sintering     433
Hot Pressing     433
Pinning Grain Boundaries     434
More Grain Growth     435
Grain Boundaries, Surfaces, and Sintering     436
Exaggerated Grain Growth     437
Fabricating Complex Shapes     438
Pottery     439
Pores and Porous Ceramics     439
Sintering with Two and Three Phases     440
Examples of Sintering in Action     441
Computer Modeling     441
Solid-State Phase Transformations and Reactions     444
Transformations and Reactions: The Link     444
The Terminology     445
Technology     445
Phase Transformations without Changing Chemistry     447
Phase Transformations Changing Chemistry     448
Methods for Studying Kinetics     449
Diffusion through a Layer: Slip Casting     450
Diffusion through a Layer: Solid-State Reactions     451
The Spinel-Forming Reaction     451
Inert Markers and Reaction Barriers     452
Simplified Darken Equation      453
The Incubation Period     454
Particle Growth and the Effect of Misfit     454
Thin-Film Reactions     455
Reactions in an Electric Field     457
Phase Transformations Involving Glass     458
Pottery     459
Cement     459
Reactions Involving a Gas Phase     460
Curved Interfaces     461
Processing Glass and Glass-Ceramics     463
The Market for Glass and Glass Products     463
Processing Bulk Glasses     463
Bubbles     467
Flat Glass     468
Float-Glass     469
Glassblowing     470
Coating Glass     472
Safety Glass     473
Foam Glass     473
Sealing Glass     473
Enamel     474
Photochromic Glass     474
Ceramming: Changing Glass to Glass-Ceramics     474
Glass for Art and Sculpture     476
Glass for Science and Engineering     478
Coatings and Thick Films     481
Defining Thick Film     481
Tape Casting     481
Dip Coating     484
Spin Coating      484
Spraying     485
Electrophoretic Deposition     486
Thick-Film Circuits     488
Thin Films and Vapor Deposition     494
The Difference between Thin Films and Thick Films     494
Acronyms, Adjectives, and Hyphens     494
Requirements for Thin Ceramic Films     495
Chemical Vapor Deposition     495
Thermodynamics of Chemical Vapor Deposition     497
Chemical Vapor Deposition of Ceramic Films for Semiconductor Devices     498
Types of Chemical Vapor Deposition     499
Chemical Vapor Deposition Safety     500
Evaporation     500
Sputtering     501
Molecular-Beam Epitaxy     502
Pulsed-Laser Deposition     503
Ion-Beam-Assisted Deposition     504
Substrates     504
Growing Single Crystals     507
Why Single Crystals?     507
A Brief History of Growing Ceramic Single Crystals     507
Methods for Growing Single Crystals of Ceramics     508
Melt Technique: Verneuil (Flame-Fusion)     509
Melt Technique: Arc-Image Growth     511
Melt Technique: Czochralski     511
Melt Technique: Skull Melting      514
Melt Technique: Bridgman-Stockbarger     515
Melt Technique: Heat-Exchange Method     516
Applying Phase Diagrams to Single-Crystal Growth     516
Solution Technique: Hydrothermal     517
Solution Technique: Hydrothermal Growth at Low Temperature     519
Solution Technique: Flux Growth     519
Solution Technique: Growing Diamonds     521
Vapor Technique: Vapor-Liquid-Solid     521
Vapor Technique: Sublimation     522
Preparing Substrates for Thin-Film Applications     522
Growing Nanowires and Nanotubes by Vapor-Liquid-Solid and Not     522
Properties and Applications
Conducting Charge or Not     529
Ceramics as Electrical Conductors     529
Conduction Mechanisms in Ceramics     531
Number of Conduction Electrons     532
Electron Mobility     533
Effect of Temperature     533
Ceramics with Metal-Like Conductivity     534
Applications for High-[sigma] Ceramics     535
Semiconducting Ceramics     537
Examples of Extrinsic Semiconductors     539
Varistors     540
Thermistors     541
Wide-Band-Gap


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Ceramic Materials: Science and Engineering, Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties , Ceramic Materials: Science and Engineering

X
WonderClub Home

This item is in your Collection

Ceramic Materials: Science and Engineering, Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties , Ceramic Materials: Science and Engineering

Ceramic Materials: Science and Engineering

X
WonderClub Home

This Item is in Your Inventory

Ceramic Materials: Science and Engineering, Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties , Ceramic Materials: Science and Engineering

Ceramic Materials: Science and Engineering

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: