Wonder Club world wonders pyramid logo
×

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I Book

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I
Shock Wave Science and Technology Reference Library, Vol. 2: Solids I, , Shock Wave Science and Technology Reference Library, Vol. 2: Solids I has a rating of 3 stars
   2 Ratings
X
Shock Wave Science and Technology Reference Library, Vol. 2: Solids I, , Shock Wave Science and Technology Reference Library, Vol. 2: Solids I
3 out of 5 stars based on 2 reviews
5
0 %
4
0 %
3
100 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $219.00
Original Magazine
Physical Format

Sold Out

  • Shock Wave Science and Technology Reference Library, Vol. 2: Solids I
  • Written by author Y. Horie
  • Published by Springer-Verlag New York, LLC, April 2007
  • This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation, high-velocity impact, and penetratio
Buy Digital  USD$219.00

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

Use of the Z Accelerator for Isentropic and Shock Compression Studies   Marcus D. Knudson     1
Introduction     1
Experimental Technique     3
ICE Experimental Configuration     3
MHD Modeling     5
Pulse Shaping     10
Magnetically Accelerated Flyer Plates     13
Analysis Techniques     17
Applications     22
Isentropic EOS Measurements     22
Phase Transitions     24
Constitutive Properties     28
Magnetically Accelerated Flyer Plates     30
Conclusion     38
References     40
Ultrashort Laser Shock Dynamics   D.S. Moore   S.D. McGrane   D.J. Funk     47
Introduction     47
Laser Shock Generation     48
Laser Driven Flyers     48
Ablated Reactive Layer Shock Launch     49
Direct Laser Drive     50
Laser Shock Diagnostics     60
Interferometry     60
Frequency Domain Interferometry (FDI)     61
Ultrafast Interferometric Microscopy     62
Dynamic Ellipsometry     66
Affect on Optical Properties     67
Shocked Metals     67
Shocked Dielectrics     73
Ultrafast Spectroscopy     76
UV/Visible     76
Raman     77
Coherent Raman     78
Infrared Absorption     81
Measurement of Shock Wave Properties     85
Rise Time Measurements     86
Ultrafast Shock-Induced Chemistry     92
Shock-Induced Reaction in Al Nanoparticles     93
Shock-Induced Reaction in Polyvinyl Nitrate Thin Films     94
References     98
Failure Waves and Their Effects on Penetration Mechanics in Glass and Ceramics   S.J. Bless   N.S. Brar     105
Introduction     105
Summary of Observations of Plane Failure Waves     106
Experimental Methods and Particular Results     108
Chemical Composition and Physical Properties of Various Glasses     108
Elastic Compression of Glass     108
Failure Waves in Glass Plates     110
Failure Waves in Glass Bars     115
Failure Waves in Diverging Stress Fields     119
Failure Waves in Polycrystalline and Single Crystal Materials     121
Proposed Mechanisms and Modeling of Failure Waves      123
Degradation of Shear Modulus of Glass     123
Phase Transformation     124
Elastic Strain Energy     124
Inhomogeneous Shear (Microcracking) Flow     125
Phenomenological Model Based on Damage-Induced, Self-propagating Failure Wave     127
Heterogeneous Microdamage from Stress Concentrations     127
Mesoscale Models     133
Terminal Ballistics     133
Ceramic Armor and Failure Waves     133
Brittle Projectiles     136
References     137
Empirical Equations of State for Solids   Ralph Menikoff     143
Introduction     143
Physics Background     144
Thermodynamics     145
Shock Relations     148
Example Hugoniot Loci     151
Complete EOS     154
Ideal Gas EOS     154
Stiffened Gas EOS     155
Hayes EOS     156
Generalized Hayes EOS     159
Mie-Gruneisen EOS     166
Hugoniot as Reference     168
Isentrope as Reference     174
Porous Materials     175
Equilibrium Mixture     178
Wide Domain Model EOS      180
Generalized Mie-Gruneisen EOS     180
Tabular EOS     181
Concluding Remarks     182
References     185
Elastic-Plastic Shock Waves   Ralph Menikoff     189
Introduction     189
Uniaxial Flow     190
Hyperelastic Model     191
Flow Equations     194
Shock Locus     196
Example     199
Illustrative Wave Profiles     201
Split Elastic-Plastic Wave     202
Overdriven Plastic Wave     206
Additional Wave Structures     206
VISAR Time Histories     210
Extension to Three-dimensions     214
Elastic Flow     214
Plastic Flow     218
Summary     220
References     223
Elements of Phenomenological Plasticity: Geometrical Insight, Computational Algorithms, and Topics in Shock Physics   R.M. Brannon     225
Introduction     225
Notation and Terminology     226
Rate-Independent Plasticity     232
Applicability of the Governing Equations     235
Discussion of the Governing Equations     237
Interpreting and Integrating the Stress Rate     243
Nonhardening von Mises (J[subscript 2]) Plasticity     248
Phantom Inelastic Partitioning     250
Rate Dependence     254
Plastic Wave Speeds     263
Conclusions     269
References     271
Numerical Methods for Shocks in Solids   David J. Benson     275
Introduction     275
The History of Hydrocodes     276
The Discretization of Time and Space     277
The Structure of Hydrocodes     279
The Lagrangian Step     280
The Fundamental Importance of the Discrete Gradient Operator     280
Updating the State Variables     282
The Finite Element Method     284
A Finite Difference Method: Integral Differencing     287
The Godunov Method     289
Particle Methods     291
The Shock Viscosity     298
Contact Boundary Conditions     300
Contact Force Calculations     302
The Eulerian Step     304
Modification of the Lagrange Step for Eulerian Formulations: Multi-Material Elements     304
Interface Reconstruction     307
Transport Methods     308
Transport in One Dimension     311
Transport in Two and Three Dimensions     313
Future Research Directions     314
References     315
Mesoscale Modeling of Shocks in Heterogeneous Reactive Materials   Mel R. Baer     321
Introduction     321
Microstructure of Composite Explosives     322
Some Historical Observations     323
Detonation at the Mesoscale     324
Mesoscale Modeling Approaches     325
Particle-Based Methods     326
Quasiparticle Methods     328
Direct Numerical Simulation Methods     329
Mesoscale Stochastic Models     333
Mesoscale Model of a Granular Explosive     335
Mesoscale Model of a Composite Explosive     335
Mesoscale Model of Detonation in a Granular Explosive     337
Experimental Studies of Mesoscale Behavior     339
Investigations of Ordered Granular Material     340
Investigations of Disordered Heterogeneous Materials     341
Observations of Mesoscale Reaction Effects     343
Homogenization Methods     344
Linking Modeling to Observations     345
Future Prospective and Summary     349
References      351
Index     357


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I, , Shock Wave Science and Technology Reference Library, Vol. 2: Solids I

X
WonderClub Home

This item is in your Collection

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I, , Shock Wave Science and Technology Reference Library, Vol. 2: Solids I

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I

X
WonderClub Home

This Item is in Your Inventory

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I, , Shock Wave Science and Technology Reference Library, Vol. 2: Solids I

Shock Wave Science and Technology Reference Library, Vol. 2: Solids I

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: