Wonder Club world wonders pyramid logo
×

Photonic Crystals: Advances in Design, Fabrication, and Characterization Book

Photonic Crystals: Advances in Design, Fabrication, and Characterization
Photonic Crystals: Advances in Design, Fabrication, and Characterization, , Photonic Crystals: Advances in Design, Fabrication, and Characterization has a rating of 3 stars
   2 Ratings
X
Photonic Crystals: Advances in Design, Fabrication, and Characterization, , Photonic Crystals: Advances in Design, Fabrication, and Characterization
3 out of 5 stars based on 2 reviews
5
0 %
4
0 %
3
100 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $180.00
Original Magazine
Physical Format

Sold Out

  • Photonic Crystals: Advances in Design, Fabrication, and Characterization
  • Written by author K. Busch
  • Published by Wiley, John & Sons, Incorporated, April 2004
  • The majority of the contributions in this topically edited book stems from the priority SP1113 Photonische Kristalle program run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germa
Buy Digital  USD$180.00

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

Preface.

About the editors.

List of contributors.

1 On the solid-state theoretical description of photonic crystals (K. Busch, M. Diem, M. Frank, A. Garcia-Martin, F. Hagmann, D. Hermann, S. Mingaleev, S. Pereira, M. Schillinger, and L. Tkeshelashvili).

1.1 Introduction.

1.2 Photonic band structure computation.

1.2.1 Density of states.

1.2.2 Group velocity and group velocity dispersion.

1.3 Nonlinear photonic crystals.

1.4 Finite structures.

1.5 Defect structures in photonic crystals.

1.5.1 Maximally localized photonic Wannier functions.

1.5.2 Wannier description of defect structures.

1.5.3 Localized cavity modes.

1.5.4 Dispersion relations of waveguides.

1.5.5 Light propagation through photonic crystal circuits.

1.6 Conclusions.

References.

2 Spontaneous emission in photonic structures: Theory and simulation (G. Boedecker, C. Henkel, Ch. Hermann, and O. Hess).

2.1 Introduction.

2.2 Basic con cepts.

2.2.1 Fermi’s Golden Rule.

2.2.2 Beyond the simple picture.

2.2.3 Coherent tuning of spontaneous decay.

2.2.4 QED in a structured continuum.

2.3 Simulations.

2.3.1 Frequency domain.

2.3.2 Time domain.

2.4 Concluding remarks.

References.

3 Semiconductor optics in photonic crystal structures (T. Meier and S. W. Koch).

3.1 Introduction.

3.2 Semiclassical theory.

3.2.1 Light–matter coupling.

3.2.2 Generalized Coulomb potential.

3.2.3 Hamilton operator.

3.2.4 Equations of motion.

3.3 Numerical results.

3.3.1 Linear exciton absorption.

3.3.2 Coherently excited inhomogeneous populations.

3.3.3 Quasi-equilibrium inhomogeneous populations and nonlinear absorption.

3.3.4 Coherent wave packet dynamics versus dephasing and thermalization.

3.4 Summary and outlook.

References.

4 Electrochemically-prepared 2D and 3D photonic crystals (R.B. Wehrspohn, J. Schilling, J. Choi, Y. Luo, S. Matthias, S. L. Schweizer, F. Müller, U. Gösele, S. Lölkes, S. Langa, J. Carstensen, and H. Föll).

4.1 Introduction.

4.2 Materials.

4.2.1 Porous silicon.

4.2.2 Porous alumina.

4.2.3 Porous III–V semiconductors.

4.3 Application to photonic crystals.

4.3.1 Introduction.

4.3.2 2D photonic crystals made of macroporous silicon.

4.3.3 Photonic defects in electrochemically–prepared 2D photonic crystals.

4.3.4 3D photonic crystals made of macroporous silicon.

4.3.5 2D photonic crystals made of porous alumina.

4.3.6 1D photonic crystals made of InP.

4.3.7 2D photonic crystals made of InP.

4.3.8 3D photonic crystals made of InP and GaAs.

4.4 Summary.

References.

5 Optical properties of planar metallo–dielectric photonic crystals (A. Christ, S. Linden, T. Zentgraf, K. Schubert, D. Nau, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, F. Schindler, A.W. Holleitner, J. Stehr, J. Crewett, J. Lupton, T. Klar, U. Scherf, J. Feldmann, C. Dahmen, G. von Plessen, and H. Giessen).

5.1 Introduction.

5.2 Optical characterization of individual gold nanodisks.

5.3 Observation of Rayleigh anomalies in metallo-dielectric nanostructures.

5.3.1 Metallic nanoparticle arrays.

5.3.2 Metallic nanowire arrays.

5.4 Waveguide–plasmon polaritons: Strong coupling in a metallic photonic crystal.

5.4.1 Metallic nanoparticle arrays on dielectric waveguide substrates.

5.4.2 Metallic nanowire arrays on dielectric waveguide substrates.

5.4.3 Ultrafast dynamics of waveguide-plasmon polaritons.

5.5 A polymer DFB laser based on a metal nanoparticle array.

5.6 Summary.

References.

6 Preparation of 3D photonic crystals from opals (M. Egen, R. Zentel, P. Ferrand, S. Eiden, G. Maret, and F. Caruso).

6.1 Introduction.

6.2 Preparation of monodisperse colloids.

6.2.1 General methods.

6.2.2 Preparation of functional core shell structures.

6.3 Crystallization into opaline structures.

6.3.1 Sedimentation.

6.3.2 Crystallization mediated by the magnetic field.

6.3.3 Two dimensional crystallization to photonic crystal films.

6.4 Structured photonic crystals.

6.4.1 Lateral patterning.

6.4.2 Preparation of hetero structures from different colloids.

6.5 Replica from opaline structure.

References.

7 Light emitting opal–based photonic crystal heterojunctions (S. G. Romanov, N. Gaponik, A. Eychmüller, A. L. Rogach, V. G. Solovyev, D. N. Chigrin, and C. M. Sotomayor Torres).

7.1 Introduction.

7.2 Experimental techniques and material preparation.

7.2.1 Measurement techniques.

7.2.2 Preparation of hetero–opals.

7.2.3 Selective impregnation of hetero–opals with luminescent nanocrystals.

7.3 Reflectance and transmission spectra of hetero–opals.

7.3.1 Observation of two Bragg band gaps.

7.3.2 The interface gap.

7.4 Light emission in hetero–opals.

7.4.1 Anisotropy of photoluminescence in hetero–opals.

7.4.2 Emission modification at the interface.

References.

8 Three–dimensional lithography of Photonic Crystals (A. Blanco, K. Busch, M. Deubel, C. Enkrich, G. von Freymann, M. Hermatschweiler, W. Koch, S. Linden, D.C. Meisel, and M. Wegener).

8.1 Introduction.

8.2 Holographic lithography.

8.2.1 The photoresist.

8.2.2 The crystallography of multiple-beam interference patterns.

8.2.3 Experimental realization.

8.2.4 Optical properties of the photoresist structures.

8.3 Direct laser writing.

8.3.1 Multi–photon polymerization.

8.3.2 Experimental realization.

8.3.3 Direct laser writing of three–dimensional photonic crystals.

8.3.4 Optical characterization.

8.4 Templates infiltration.

8.4.1 Silicon CVD.

8.4.2 Electrochemical deposition.

8.5 Conclusions.

References.

9 Tunable photonic crystals using liquid crystals (H.–S. Kitzerow and J.P. Reithmaier).

9.1 Introduction: Concepts of tunable photonic crystals.

9.2 Properties of liquid crystals.

9.3 Spatially periodic LCs and colloidal crystals.

9.3.1 Periodic liquid crystals.

9.3.2 Colloidal crystals containing LCs.

9.3.3 Polymer–dispersed liquid crystals.

9.4 Microstructured semiconductors.

9.4.1 Macroporous silicon.

9.4.2 Group III–V semiconductors.

9.5 Summary and perspectives.

9.5.1 Possible applications of macroporous silicon.

9.5.2 Possible applications for tunable planar III/V–semiconductor photonic crystals.

References.

10 Microwave modelling of photonic crystals (W. Freude, G.–A. Chakam, J.–M. Brosi, and Ch. Koos).

10.1 Fundamentals.

10.1.1 Maxwell’s equations and scaling laws.

10.1.2 Numerical tools.

10.2 Microwave measurements.

10.2.1 Scattering matrix.

10.2.2 Microwave equipment.

10.2.3 Coupling of coaxial metallic to dielectric strip waveguide.

10.3 Loss measurement of waveguide resonator.

10.4 Experimental results.

10.4.1 2Dinfinite–height PhC.

10.4.2 2D finite–height PhC with line–defect waveguide.

References.

11 Scanning near-field optical studies of photonic devices (V. Sandoghdar, B. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki).

11.1 Introduction.

11.2 Scanning near-field optical microscopy (SNOM).

11.2.1 Brief historical background.

11.2.2 The operation principle of SNOM.

11.2.3 Instrumentation.

11.2.4 Various modes of SNOM operation.

11.3 Imaging photonic devices with SNOM.

11.3.1 The evanescent field on a prism.

11.3.2 SNOM on whispering–gallery resonators.

11.3.3 Interferometric SNOM measurements.

11.3.4 Photonic crystals.

11.4 Manipulating photonic devices with SNOM.

11.5 Conclusion.

References.

12 Application of photonic crystals for gas detection and sensing (R.B. Wehrspohn, S. L. Schweizer, J. Schilling, T. Geppert, C. Jamois, R. Glatthaar, P. Hahn, A. Feisst, and A. Lambrecht).

12.1 Principle.

12.2 Realizations with 3D photonic crystals.

12.3 Conclusion.

References.

13 Polymeric photonic crystal lasers (K. Forberich, S. Riechel, S. Pereira, A. Gombert, K. Busch, J. Feldmann, and U. Lemmer).

13.1 Introduction.

13.2 Fabrication of microstructured surfaces by interference lithography.

13.2.1 Interference lithography.

13.2.2 Replication and subsequent substrate processing.

13.3 Active materials for organic photonic crystal lasers.

13.4 Lasing in two dimensional polymeric photonic crystals.

13.5 Semiclassical theory of lasing in surface relief structures.

13.5.1 Semiclassical laser theory in structured media.

13.5.2 Effective 2D model for surface relief structures.

13.5.3 Discussion of lasing behavior in surface relief structures.

13.6 Conclusions.

References.

14 Photonic crystal fibers (J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, and F. Lederer).

14.1 Introduction.

14.2 Modeling of photonic crystal fibers.

14.2.1 Plane wave expansion methods.

14.2.2 The localized functions method.

14.2.3 The finite element method (FEM).

14.2.4 The multipole method.

14.2.5 Propagation methods.

14.3 Fiber technology.

14.3.1 Preparation of photonic crystal fibers.

14.3.2 Fluid–dynamic aspects in the preparation of photonic crystal fibers.

14.4 Special properties of photonic crystal fibers.

14.4.1 Spectral transmission.

14.4.2 Variation of the numerical aperture and the mode profil.

14.4.3 Dispersion properties.

14.4.4 Mechanical properties.

14.5 Overviewof applications.

14.6 Conclusions.

References.

15 Photonic crystal optical circuits in moderate index materials (M. Augustin, G. Böttger, M. Eich, C. Etrich, H.-J. Fuchs, R. Iliew, U. Hübner, M. Kessler, E.–B. Kley, F. Lederer, C. Liguda, S. Nolte, H.G.Meyer,W.Morgenroth, U. Peschel, A. Petrov, D. Schelle, M. Schmidt, A. Tünnermann, and W. Wischmann).

15.1 Motivation.

15.2 Design of the PhC films.

15.3 Photonic crystal waveguides in niobiumpentoxide.

15.4 Photonic crystals in polymer films.

15.5 Conclusions.

References.

16 Planar high index-contrast photonic crystals for telecom applications (R. März, S. Burger, S. Golka, A. Forchel, C. Hermann, C. Jamois, D. Michaelis, and K. Wandel).

16.1 Introduction and motivation.

16.2 Wave guide losses.

16.3 Efficient analysis of photonic crystals.

16.4 Patterning of photonic crystals.

16.5 Sources for multi-channel WDM–transmitters.

16.6 Photonic crystal superprisms for WDM–applications.

16.7 PhC–based dispersion compensator.

16.8 Fiber–to–chip coupling of photonic crystals.

References.

17 Photonic crystal based active optoelectronic devices (M. Kamp, T. Happ, S. Mahnkopf, A. Forchel, S. Anand, and G.–H. Duan).

17.1 Introduction.

17.2 Waveguide based 2D photonic crystals.

17.3 Semiconductor lasers with photonic crystal mirrors.

17.3.1 Fabrication.

17.3.2 Device performance.

17.3.3 Single mode photonic crystal based lasers.

17.4 All photonic crystal lasers.

17.5 Tunable photonic crystal lasers.

17.6 Conclusion.

References.

Appendix.

A. List of abbreviations.

B. Conventions.

Index.


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Photonic Crystals: Advances in Design, Fabrication, and Characterization, , Photonic Crystals: Advances in Design, Fabrication, and Characterization

X
WonderClub Home

This item is in your Collection

Photonic Crystals: Advances in Design, Fabrication, and Characterization, , Photonic Crystals: Advances in Design, Fabrication, and Characterization

Photonic Crystals: Advances in Design, Fabrication, and Characterization

X
WonderClub Home

This Item is in Your Inventory

Photonic Crystals: Advances in Design, Fabrication, and Characterization, , Photonic Crystals: Advances in Design, Fabrication, and Characterization

Photonic Crystals: Advances in Design, Fabrication, and Characterization

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: