Wonder Club world wonders pyramid logo
×

Kolyvagin Systems Book

Kolyvagin Systems
Kolyvagin Systems, Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selme, Kolyvagin Systems has a rating of 4 stars
   2 Ratings
X
Kolyvagin Systems, Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selme, Kolyvagin Systems
4 out of 5 stars based on 2 reviews
5
0 %
4
100 %
3
0 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $99.99
Original Magazine
Physical Format

Sold Out

  • Kolyvagin Systems
  • Written by author Barry Mazur
  • Published by American Mathematical Society, March 2004
  • Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selme
Buy Digital  USD$99.99

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selmer group associated to the Cartier dual $T^*$. Given an Euler system, Kolyvagin produces a collection of cohomology classes which he calls ''derivative'' classes. It is these derivative classes which are used to bound the dual Selmer group. The starting point of the present memoir is the observation that Kolyvagin's systems of derivative classes satisfy stronger interrelations than have previously been recognized. We call a system of cohomology classes satisfying these stronger interrelations a Kolyvagin system. We show that the extra interrelations give Kolyvagin systems an interesting rigid structure which in many ways resembles (an enriched version of) the ''leading term'' of an $L$-function. By making use of the extra rigidity we also prove that Kolyvagin systems exist for many interesting representations for which no Euler system is known, and further that there are Kolyvagin systems for these representations which give rise to exact formulas for the size of the dual Selmer group, rather than just upper bounds.


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Kolyvagin Systems, Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selme, Kolyvagin Systems

X
WonderClub Home

This item is in your Collection

Kolyvagin Systems, Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selme, Kolyvagin Systems

Kolyvagin Systems

X
WonderClub Home

This Item is in Your Inventory

Kolyvagin Systems, Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selme, Kolyvagin Systems

Kolyvagin Systems

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: