Wonder Club world wonders pyramid logo
×

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169 Book

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169
Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169, When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally sp, Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169 has a rating of 3 stars
   2 Ratings
X
Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169, When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally sp, Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169
3 out of 5 stars based on 2 reviews
5
0 %
4
0 %
3
100 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $99.99
Original Magazine
Physical Format

Sold Out

  • Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169
  • Written by author Valentin Poenaru
  • Published by American Mathematical Society, March 2004
  • When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally sp
Buy Digital  USD$99.99

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally speaking, no longer closed. We show that at the cost of replacing $V^3$ by $V_h^3 = { V^3 text{ with very many holes}}$, we can always find representations $X^2 stackrel{f}{rightarrow} V^3$ with $X^2$ locally finite and almost-arborescent, with $Psi (f)=Phi (f)$, with the open regular neighbourhood (the only one which is well-defined here) Nbd$(fX^2)=V^3_h$ and such that on any precompact tight transversal to the set of double lines, we have only finitely many limit points (of the set of double points). Moreover, if $V^3$ is the universal covering space of a closed $3$-manifold, $V^3=widetilde M^3$, then we can find an $X^2$ with a free $pi_1M^3$ action and having the equivariance property $f(gx)=gf(x)$, $gin pi_1M^3$. Having simultaneously all these properties for $X^2stackrel{f}{rightarrow} widetilde M^3$ is one of the steps in the first author's program for proving that $pi_1^infty widetilde M^3=~0$, [Po11, Po12]. Achieving equivariance is far from being straightforward, since $X^2$ is gotten starting from a tree of fundamental domains on which $pi_1M^3$ cannot, generally speaking, act freely. So, in this paper we have both a representation theorem for general ($pi_1=0$) $V^3$'s and a harder equivariant representation theorem for $widetilde M^3$ (with $gfX^2=fX^2, , ginpi_1M^3$), the proof of which is not a specialization of the first, ''easier'' result. But, finiteness is achieved in both contexts. In a certain sense, this finiteness is a best possible result, since if the set of limit points in question is $emptyset$ (i.e. if the set of double points is closed), then $pi_1^infty V_h^3$ (which is always equal to $pi_1^infty V^3$ ) is zero. In [PoTa2] it was also shown that when we insist on representing $V^3$ itself, rather than $V_h^3$, and if $V^3$ is wild ($pi_1^inftynot =0$), then the transversal structure of the set of double lines can exhibit chaotic dynamical behavior. Our finiteness theorem avoids chaos at the cost of a lot of redundancy (the same double point $(x, y)$ can be reached in many distinct ways starting from the singularities).


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169, When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally sp, Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169

X
WonderClub Home

This item is in your Collection

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169, When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally sp, Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169

X
WonderClub Home

This Item is in Your Inventory

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169, When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally sp, Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds (Memoirs of the American Mathematical Society Series #800): A Finiteness Result, Vol. 169

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: