Wonder Club world wonders pyramid logo
×

Introduction to Mechatronics Book

Introduction to Mechatronics
Be the First to Review this Item at Wonderclub
X
Introduction to Mechatronics, Introduction to Mechatronic Design is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering. ¿ Unlike other texts on mechatronics that focus on derivations and calculations, Introduction to Mechatronics
out of 5 stars based on 0 reviews
5
0 %
4
0 %
3
0 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $149.47
Original Magazine
Physical Format

Sold Out

  • Introduction to Mechatronics
  • Written by author Edward J. Carryer, Thomas W. Kenny, Matt Ohline
  • Published by Prentice Hall, 1/4/2011
  • Introduction to Mechatronic Design is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering. ¿ Unlike other texts on mechatronics that focus on derivations and calculations
Buy Digital  USD$149.47

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

Part 1: Introduction

Preface

Chapter 1 Introduction

1.1 Philosophy

1.3 Who Should Study Mechatronics?

1.3 How to Use this Book

1.4 Summary

Part 2: Software

Chapter 2 What’s a Micro?

2.1 Introduction

2.2 What IS a “Micro”?

2.3 Microprocessors, Microcontrollers, Digital Signal Processors (DSP’s) and More

2.4 Microcontroller Architecture

2.5 The Central Processing Unit (CPU)

2.5.1 Representing Numbers in the Digital Domain

2.5.2 The Arithmetic Logic Unit (ALU)

2.6 The Data Bus and the Address Bus

2.7 Memory

2.8 Subsystems and Peripherals

2.9 Von Neumann Architecture

2.10 The Harvard Architecture

2.11 Real World Examples

2.11.1 The Freescale MC9S12C32 Microcontroller

2.11.2 The Microchip PIC12F609 Microcontroller

2.12 Where to Find More Information

2.13 Homework Problems

Chapter 3 Microcontroller Math and Number Manipulation

3.1 Introduction

3.2 Number Bases and Counting

3.3 Representing Negative Numbers

3.4 Data Types

3.5 Sizes of Common Data Types

3.6 Arithmetic on Fixed Size Variables

3.7 Modulo Arithmetic

3.8 Math Shortcuts

3.8 Boolean Algebra

3.9 Manipulating Individual Bits

3.10 Testing Individual Bits

3.11 Homework Problems

Chapter 4: Programming Languages

4.1 Introduction

4.2 Machine Language

4.3 Assembly Language

4.4 High-Level Languages

4.5 Interpreters

4.6 Compilers

4.7 Hybrid Compiler/Interpreters

4.8 Integrated Development Environments (IDEs)

4.9 Choosing a Programming Language

4.10 Homework Problems

Chapter 5: Program Structures for Embedded Systems

5.1 Background

5.2 Event Driven Programming

5.3 Event Checkers

5.4 Services

5.5 Building an Event Driven Program

5.6 An Example

5.7 Summary of Event Driven Programming

5.8 State Machines

5.9 A State Machine in Software

5.10 The Cockroach Example as a State Machine

5.11 Summary

Homework Problems

Chapter 6 Software Design

6.1 Introduction

6.2 Building as a Metaphor for Creating Software

6.3 Introducing Some Software Design Techniques

6.3.1 Decomposition

6.3.2 Abstraction and Information Hiding

6.3.3 Pseudo-Code

6.4 Software Design Process

6.4.1 Generating Requirements

6.4.2 Defining the Program Architecture

6.4.3 The Performance Specification

6.4.4 The Interface Specification

6.4.5 Detail Design

6.4.6 Implementation

6.4.6.1 Intra-Module Organization

6.4.6.2 Writing the Code

6.4.7 Unit Testing

6.4.8 Integration

6.5 The Sample Problem

6.5.1 Requirements for the Morse Code Receiver

6.5.2 The Morse Code Receiver System Architecture

6.5.3 The Morse Code Receiver Software Architecture

6.5.4 The Morse Code Receiver Performance Specifications

6.5.5 The Morse Code Receiver Interface Specification

6.5.5.1 The Button Module Interface Specification

6.5.5.2 The Morse Elements Module Interface Specification

6.5.5.3 The Morse Decode Module Interface Specification

6.5.5.4 The LCD Display Module Interface Specification

6.5.6 The Morse Code Receiver Detail Design

6.5.6.1 Button Module Detail Design

6.5.6.2 Morse Elements Detail Design

6.5.6.3 Morse Decode Detail Design

6.5.6.4 Display Detail Design

6.5.6.5 Main Detail Design

6.5.7 The Morse Code Receiver Implementation

6.5.8 The Morse Code Receiver Unit Testing. 6-28

6.5.9 The Morse Code Receiver Integration

6.6 Homework Problems

Chapter 7 Communications

7.1: Introduction

7.2: Without a Medium, there is no Message

7.3: Bit-Parallel and Bit-Serial Communications

7.3.1: Bit-Serial Communications

7.3.1.1: Synchronous Serial Communications

7.3.1.2: Asynchronous Serial Communications

7.3.2: Bit Parallel Communications

7.4: Signaling Levels

7.4.1: TTL/CMOS Levels

7.4.2: RS-232

7.4.3: RS-485

7.5: Communicating Over Limited Bandwidth Channels

7.5.1: Telephones and Modems

7.5.1.1: Modulation Techniques

7.5.1.2: Amplitude Modulation (AM)

7.5.1.3: Frequency Modulation (FM)

7.5.1.4: Phase Modulation (PM)

7.5.1.5: Quadrature Amplitude Modulation (QAM)

7.6: Communicating with Light

7.7: Communicating over a Radio

7.7.1: RF Remote Controls

7.7.2: RF Data Links

7.7.3: RF Networks

7.8: Homework Problems

Chapter 8 : Microcontroller Peripherals

8.1 : Accessing the Control Registers

8.2 : The Parallel Input/Output Subsystem

8.2.1 : The Data Direction Register

8.2.2 : The Input/Output Register(s)

8.2.3 : Shared Function Pins

8.3 : Timer Subsystems

8.3.1 : Timer Basics

8.3.2 : Timer Overflow

8.3.3 : Output Compare

8.3.4 : Input Capture

8.3.5 : Combining Input Capture and Output Compare to Control an Engine

8.4 : Pulse Width Modulation (PWM)

8.5 : PWM Using the Output Compare System

8.6 : The Analog-to-Digital (A/D) Converter Subsystem

8.6.1 : The Process for Converting an Analog Input to a Digital Value

8.6.2 : The A/D Converter Clock

8.6.3 : Multiplexer Switching Transients and DC Effects

8.6.4 : Automating the A/D Conversion Process

8.7 : Homework Problems

Part 3: Electronics

Chapter 9 Basic Circuit Analysis and Passive Components

9.1 Voltage, Current and Power

9.2 Circuits and Ground

9.3 Laying Down the Laws

9.4 Resistance

9.4.1 Resistors in Series and Parallel

9.4.2 The Voltage Divider

9.5 Thevenin Equivalents

9.6 Capacitors

9.6.1 Capacitors in Series and Parallel

9.6.2 Capacitors and Time-Varying Signals

9.7 Inductors

9.7.1 Inductors and Time-Varying Signals

9.8 The Time and Frequency Domains

9.9 Circuit Analysis with Multiple Component Types

9.9.1 Basic RC Circuit Configurations

9.9.2 Low-Pass RC Filter Behavior in the Time Domain

9.9.3 High-Pass RC Filter Behavior in the Time Domain

9.9.4 RL Circuit Behavior in the Time Domain

9.9.5 Low-Pass RC Filter Behavior in the Frequency Domain

9.9.6 High-Pass RC Filter Behavior in the Frequency Domain

9.9.7 High-Pass RC Filter with a DC Bias

9.10 Simulation Tools

9.10.1 Limitations of Simulation Tools

9.11 Real Voltage Sources

9.12 Real Measurements

9.12.1 Measuring Voltage

9.12.2 Measuring Current

9.13 Real Resistors

9.13.1 A Model for a Real Resistor

9.13.2 Resistor Construction Basics

9.13.3 Carbon Film Resistors

9.13.4 Metal Film Resistors

9.13.5 Power Dissipation in Resistors

9.13.6 Potentiometers

9.13.7 Multi-Resistor Packages

9.13.8 Choosing Resistors

9.14 Real Capacitors

9.14.1 A Model for a Real Capacitor

9.14.2 Capacitor Construction Basics

9.14.3 Polar vs. Non-Polar Capacitors

9.14.4 Ceramic Disk Capacitors

9.14.5 Monolithic Ceramic Capacitors

9.14.6 Aluminum Electrolytic Capacitors

9.14.7 Tantalum Capacitors

9.14.8 Film Capacitors

9.14.9 Electric Double Layer Capacitors / Super capacitors

9.14.10 Capacitor Labeling

9.14.10.1 Ceramic Capacitor (Disc and MLC) Labeling

9.14.10.2 Aluminum Electrolytic Capacitor Labeling

9.14.10.3 Tantalum Capacitor Labeling

9.14.10.4 Film Capacitor Labeling

9.14.11 Choosing a Capacitor

9.15 Homework Problems

Chapter 10 Semiconductors

10.1 Doping, Holes and Electrons

10.2 Diodes

10.2.1 The VI Characteristic for Diodes

10.2.2 The Magnitude of Vf

10.2.3 Reverse Recovery

10.2.4 Schottky Diodes

10.2.5 Zener Diodes

10.2.6 Light Emitting Diodes

10.2.7 Photo-Diodes

10.3 Bipolar Junction Transistors

10.3.1 The Darlington Pair

10.3.2 The Photo-Transistor

10.4 MOSFETs

10.5 hoosing Between BJTs and MOSFETs

10.5.1 When Will a BJT be the Best (or Only) Choice?

10.5.2 When Will a MOSFET be the Best (or Only) Choice?

10.5.3 How Do You Choose When Either a MOSFET or a BJT Could Work?

10.6 Multi-Transistor Circuits

10.7 Reading Transistor Data Sheets

10.7.1 Reading a BJT Data Sheet

10.7.2 Reading a MOSFET Data Sheet

10.7.3 A Sample Application

10.7.4 A Potpourri of Transistor Circuits

10.8 Homework Problems

Chapter 11 : Operational Amplifiers

11.1 : Operational Amplifier Behavior

11.2 : Negative Feedback

11.3 : The Ideal Op-Amp

11.4 : Analyzing Op-Amp Circuits

11.4.1 : The Golden Rules

11.4.2 : The Non-Inverting Op-Amp Configuration

11.4.3 : The Inverting Op-Amp Configuration

11.4.3.1 : The Virtual Ground

11.4.3.2 : There is Nothing Magic About Ground

11.4.4 : The Unity Gain Buffer

11.4.5 : The Difference Amplifier Configuration

11.4.6 : The Summer Configuration

11.4.7 : The Trans-Resistive Configuration

11.4.8 : Computation with Op-Amps

11.5 : The Comparator

11.5.1 : Comparator Circuits

11.6 : Homework Problems

Chapter 12 : Real Operational Amplifiers and Comparators

12.1 : Real Op-Amp Characteristics — How the Ideal Assumptions Fail

12.1.1 : Non-Infinite Gain

12.1.2 : Variation in Open Loop Gain with Frequency

12.1.3 : Input Current is Not Zero

12.1.3.1 : Input Bias Current and Input Offset Current

12.1.3.2 : Input Impedance

12.1.4 : The Output Voltage Source is Not Ideal

12.1.5 : Other Non-Idealities

12.1.5.1 : Input Offset Voltage

12.1.5.2 : Power Supplies

12.1.5.3 : Input Common Mode Voltage Range

12.1.5.5 : Input Common Mode Rejection Ratio

12.1.5.6 : Temperature Effects

12.2 : Reading an Op-Amp Data Sheet

12.2.1 : Maxima, Minima and Typical Values

12.2.2 : The Front Page

12.2.3 : The Absolute Maximum Ratings Section

12.2.4 : The Electrical Characteristics Section

12.2.5 : The Packaging Section

12.2.6 : The Typical Applications Section

12.3 : Reading a Comparator Data Sheet

12.3.1 : Comparator Packaging

12.4 : Comparing Op-Amps

12.5 : Homework Problems

Chapter 13 Sensors

13.1 Introduction

13.2 Sensor Output & Microcontroller Inputs

13.3 Sensor Design

13.3.1 Measuring Temperature with a Thermistor

13.3.2 Measuring Acceleration

13.3.3 Definitions of Sensor Performance Characteristics

13.4 Fundamental Sensors and Interface Circuits

13.4.1 Switches as Sensors

13.4.2 Interfacing to Switches

13.4.3 Resistive Sensors

13.4.4 Interfacing to Resistive Sensors

13.4.4.1 Using a Resistive Sensor in a Voltage Divider

13.4.4.2 Measuring Resistance Using a Current Source

13.4.4.3 The Constant Current Circuit

13.4.4.4 The Wheatstone Bridge

13.4.5 Capacitive Sensors

13.4.6 Interfacing to Capacitive Sensors

13.4.6.1 Measuring Capacitance with a Step Input

13.4.6.2 Measuring Capacitance with an Oscillator

13.4.6.3 Measuring Capacitance with a Wheatstone Bridge

13.5 A Survey of Sensors

13.5.1 Light Sensors

13.5.1.1 Photodiodes

13.5.1.2 Phototransistors

13.5.1.3 Emitter-Detector Pair Modules

13.5.1.4 Photocells

13.5.2 Strain Sensors

13.5.2.1 Metal Foil Strain Gages

13.5.2.2 Piezoresistive Strain Gages

13.5.2.3 Load Cells

13.5.3 Temperature Sensors

13.5.3.1 Thermocouples

13.5.3.2 Thermistors

13.5.4 Magnetic Field Sensors

13.5.4.1 Hall Effect Sensors

13.5.4.3 Reed Switches

13.5.5 Proximity Sensors

13.5.5.1 Capacitive Proximity Sensors

13.5.5.2 Inductive Proximity Sensors

13.5.5.3 Ultrasonic Proximity Sensors

13.5.6 Position Sensors

13.5.6.1 Potentiometers

13.5.6.2 Optical Encoders

13.5.6.3 Inductive Pickups / Gear Tooth Sensors

13.5.6.4 Reflective Infrared Sensors

13.5.6.5 Capacitive Displacement Sensors

13.5.6.6 Ultrasonic Displacement Sensors

13.5.6.7 Flex Sensors

13.5.7 Acceleration Sensors


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Introduction to Mechatronics, <i>Introduction to Mechatronic Design</i> is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering.
¿
Unlike other texts on mechatronics that focus on derivations and calculations, Introduction to Mechatronics

X
WonderClub Home

This item is in your Collection

Introduction to Mechatronics, <i>Introduction to Mechatronic Design</i> is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering.
¿
Unlike other texts on mechatronics that focus on derivations and calculations, Introduction to Mechatronics

Introduction to Mechatronics

X
WonderClub Home

This Item is in Your Inventory

Introduction to Mechatronics, <i>Introduction to Mechatronic Design</i> is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering.
¿
Unlike other texts on mechatronics that focus on derivations and calculations, Introduction to Mechatronics

Introduction to Mechatronics

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: