Wonder Club world wonders pyramid logo
×

Effective Computational Geometry for Curves and Surfaces Book

Effective Computational Geometry for Curves and Surfaces
Be the First to Review this Item at Wonderclub
X
Effective Computational Geometry for Curves and Surfaces, This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts, Effective Computational Geometry for Curves and Surfaces
out of 5 stars based on 0 reviews
5
0 %
4
0 %
3
0 %
2
0 %
1
0 %
Digital Copy
PDF format
1 available   for $152.64
Original Magazine
Physical Format

Sold Out

  • Effective Computational Geometry for Curves and Surfaces
  • Written by author Boissonnat, Jean-Daniel, Teillaud, Monique
  • Published by Springer-Verlag New York, LLC, 10/27/2010
  • This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts
Buy Digital  USD$152.64

WonderClub View Cart Button

WonderClub Add to Inventory Button
WonderClub Add to Wishlist Button
WonderClub Add to Collection Button

Book Categories

Authors

1 Arrangements Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, Nicola Wolpert 1.1 Introduction
1.2 Chronicles
1.3 Exact Construction of Planar Arrangements
1.3.1Construction by Sweeping
1.3.2 Incremental Construction
1.4 Software for Planar Arrangements
1.4.1 The Cgal Arrangements Package
1.4.2 Arrangements Traits
1.4.3 Traits Classes from Exacus
1.4.4An Emerging Cgal Curved Kernel
1.4.5 How To Speed UpYour Arrangement Computation in Cgal
1.5 Exact Construction in 3-Space
1.5.1 Sweeping Arrangements of Surfaces
1.5.2Arrangements of Quadricsin 3D
1.6 Controlled Perturbation: Fixed-Precision Approximation of Arrangements
1.7 Applications
1.7.1 Boolean Operations for Conics
1.7.2 Motion Planning for Discs
1.7.3 Lower Envelopes for Path Verification in Multi-Axis NC-Machining
1.7.4 Maximal Axis-Symmetric Polygon Containedin a Simple Polygon
1.7.5 Molecular Surfaces
1.7.6 Additional Applications
1.8 Further Reading and Open problems
2 Curved Voronoi Diagrams Jean-Daniel Boissonnat, Camille Wormser, Mariette Yvinec
2.1 Introduction
2.2 Lower Envelopes and Minimization Diagrams
2.3 Affine Voronoi Diagrams
2.3.1 Euclidean Voronoi Diagrams of Points
2.3.2 Delaunay Triangulation
2.3.3 PowerDiagrams
2.4 Voronoi Diagrams with Algebraic Bisectors
2.4.1 Möbius Diagrams
2.4.2 Anisotropic Diagrams
2.4.3Apollonius Diagrams
2.5 Linearization
2.5.1Abstract Diagrams
2.5.2 Inverse Problem
2.6 Incremental Voronoi Algorithms
2.6.1 Planar Euclidean diagrams
2.6.2 Incremental Construction
2.6.3 The Voronoi Hierarchy
2.7 Medial Axis
2.7.1 Medial Axis and Lower Envelope
2.7.2 Approximation of the Medial Axis
2.8 Voronoi Diagrams in Cgal
2.9 Applications
3 Algebraic Issues in Computational Geometry Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt, Elias Tsigaridas, Nicola Wolpert
3.1 Introduction
3.2 Computers and Numbers
3.2.1 Machine Floating Point Numbers: the IEEE 754 norm........119
3.2.2 Interval Arithmetic ......................................120
3.2.3 Filters..................................................121
3.3 Effective Real Numbers .......................................123
3.3.1 Algebraic Numbers ......................................124
3.3.2 Isolating Interval Representation of Real Algebraic Numbers
3.3.3 Symbolic Representation of Real Algebraic Numbers .........125
3.4 Computing with Algebraic Numbers ............................126
3.4.1 Resultant...............................................126
3.4.2 Isolation................................................131
3.4.3Algebraic Numbers of Small Degree ........................136
3.4.4 Comparison.............................................138
3.5 Multivariate Problems ........................................140
3.6 Topology of Planar Implicit Curves.............................142
3.6.1 The Algorithm from a Geometric Point of View .............143
3.6.2 Algebraic Ingredients.....................................144
3.6.3 How to Avoid Genericity Conditions .......................145
3.7 Topology of 3d Implicit Curves.................................146
3.7.1 Critical Points and Generic Position........................147
3.7.2 The Projected Curves ....................................148
3.7.3 Lifting a Point of the Projected Curve......................149
3.7.4 Computing Points of the Curve above CriticalValues.........151
3.7.5 Connecting the Branches .................................152
3.7.6 The Algorithm ..........................................153
3.8 Software ....................................................154
4 Differential Geometry on Discrete Surfaces David Cohen-Steiner, Jean-Marie Morvan
4.1 Geometric Properties of Subsets of Points .......................157
4.2 Length and Curvature of a Curve...............................158
4.2.1 The Length of Curves ....................................158
4.2.2 The Curvature of Curves .................................159
4.3 The Area of a Surface.........................................161
4.3.1 Definition of the Area ....................................161
4.3.2 An Approximation Theorem ..............................162
4.4 CurvaturesofSurfaces ........................................164
4.4.1 The Smooth Case........................................164
4.4.2 Pointwise Approximation of the Gaussian Curvature .........165
4.4.3 From Pointwise to Local..................................167
4.4.4 Anisotropic Curvature Measures...........................174
4.4.5 o-samples on a Surface....................................178
5 Meshing of Surfaces Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain, Günter Rote, Gert Vegter
5.1 Introduction: What is Meshing?................................181
5.1.1 Overview ...............................................187
5.2 Marching Cubesand Cube-Based Algorithms ....................188
5.2.1 Criteria for a Correct Mesh Inside a Cube ..................190
5.2.2 Interval Arithmetic for Estimating the Range of a Function ...190
5.2.3 Global Parameterizability: Snyder’s Algorithm...............191
5.2.4 Small Normal Variation ..................................196
5.3 DelaunayRefinementAlgorithms...............................201
5.3.1 Using the Local Feature Size ..............................202
5.3.2 Using Critical Points.....................................209
5.4 A Sweep Algorithm...........................................213
5.4.1Meshing a Curve ........................................215
5.4.2Meshing a Surface .......................................216
5.5 Obtaining a Correct Mesh by Morse Theory .....................223
5.5.1 Sweeping through Parameter Space ........................223
5.5.2 Piecewise-Linear Interpolation of the Defining Function
5.6 Research Problems............................................227
6 Delaunay Triangulation Based Surface Reconstruction Frédéric Cazals, Joachim Giesen
6.1 Introduction.................................................231
6.1.1 Surface Reconstruction ...................................231
6.1.2Applications ............................................231
6.1.3 Reconstruction Using the Delaunay Triangulation............232
6.1.4 A Classification of Delaunay Based Surface Reconstruction Methods
6.1.5 Organization of the Chapter ..............................234
6.2 Prerequisites.................................................234
6.2.1Delaunay Triangulations, Voronoi Diagrams and Related Concepts
6.2.2 Medial Axis and Derived Concepts.........................244
6.2.3 Topological and Geometric Equivalences....................249
6.2.4 Exercises ...............................................252
6.3 Overview of the Algorithms....................................253
6.3.1Tangent Plane Based Methods ............................253
6.3.2Restricted Delaunay Based Methods .......................257
6.3.3Inside/Outside Labeling.................................261
6.3.4Empty Balls Methods ....................................268
6.4 Evaluating Surface Reconstruction Algorithms
6.5 Software ....................................................272
6.6 Research Problems ...........................................273
7 Computational Topology: An Introduction Günter Rote, Gert Vegter
7.1 Introduction.................................................277
7.2 Simplicialcomplexes..........................................278
7.3 Simplicial homology ..........................................282
7.4 MorseTheory................................................295
7.4.1 Smooth functions and manifolds ...........................295
7.4.2 Basic Results from Morse Theory..........................300
7.5 Exercises....................................................310
7.6 Appendix:SomeBasicResultsfromLinearAlgebra...............312
8 Appendix -Generic Programming and The Cgal Library Efi Fogel, Monique Teillaud .......................................315
8.1 The Cgal OpenSourceProject ...............................315
8.2 Generic Programming ........................................316
8.3 Geometric Programming ......................................318
8.4 Cgal ......................................................320
References Index


Login

  |  

Complaints

  |  

Blog

  |  

Games

  |  

Digital Media

  |  

Souls

  |  

Obituary

  |  

Contact Us

  |  

FAQ

CAN'T FIND WHAT YOU'RE LOOKING FOR? CLICK HERE!!!

X
WonderClub Home

This item is in your Wish List

Effective Computational Geometry for Curves and Surfaces, This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts, Effective Computational Geometry for Curves and Surfaces

X
WonderClub Home

This item is in your Collection

Effective Computational Geometry for Curves and Surfaces, This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts, Effective Computational Geometry for Curves and Surfaces

Effective Computational Geometry for Curves and Surfaces

X
WonderClub Home

This Item is in Your Inventory

Effective Computational Geometry for Curves and Surfaces, This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts, Effective Computational Geometry for Curves and Surfaces

Effective Computational Geometry for Curves and Surfaces

WonderClub Home

You must be logged in to review the products

E-mail address:

Password: